\begin{tabbing} ecl{-}trans{-}reachable(${\it ds}$;${\it da}$;$v$;$L$;$x$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=let $T$,${\it ks}$,$i$,$g$,$h$,$a$,$e$ = $v$ in \+ \\[0ex]$\exists$\=${\it L'}$:event{-}info(${\it ds}$;${\it da}$) List\+ \\[0ex](${\it L'}$ $\leq$ $L$ $\in$ event{-}info(${\it ds}$;${\it da}$) List \\[0ex]c$\wedge$ \=(($\parallel$${\it L'}$$\parallel$ $<$ $\parallel$$L$$\parallel$)\+ \\[0ex]\& \=$x$\+ \\[0ex]= \\[0ex]list\_accum(\=$x$,$a$.\=let $k$,${\it zz}$ = $a$\+\+ \\[0ex]in \\[0ex]let $s$,$v$ = ${\it zz}$ \\[0ex]in \\[0ex]if deq{-}member(KindDeq;$k$;${\it ks}$) then $g$($k$,$s$,$v$,$x$) else $x$ fi ; \-\\[0ex]$i$; \\[0ex]${\it L'}$) \-\\[0ex]$\in$ $T$)) \-\-\-\- \end{tabbing}